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Abstract 

The shape of a vertical slender jet of fluid falling steadily under the 

force of gravity is studied. The problem is formulated as a nonlinear free 

boundary value problem for the potential. Surface tension effects are 

included and studied. The use of perturbation expansions results in a system 

of equations that can be solved by an efficient numerical procedure. 

Computations were made for jets issuing from three different orif ice shapes, 

which were an ellipse, a square, and an equilateral triangle. Computational 

results are presented illustrating the effects of different values for the 

surface tension coefficient on the shape of the jet and the periodic nature of 

the cross-sectional shapes. 
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Introduction 

We wish to study the steady, three-dimensional potential flow of a slender 

jet of fluid falling vertically in the presence of gravity. Our primary 

interest is to determine the shape of the free surface of the jet, given the 

cross-sectional shape and velocity profile of the jet at a particular height 

(e.g., at an orifice from which the jet emanates). We also wish to include 

surface tension effects and evaluate their influence on the shape and spatial 

stability of the jet. Viscous effects are neglected. 

This paper is an extension of our previous work on this problem (see Geer 

& Strikwerda (1980) and Strikwerda & Geer (1981)) to include the effects of 

surface tension. The mathematical formulation of the problem leads to a 

three-dimensional, nonlinear boundary value problem for Laplace's equation, 

for which the boundary of the flow is also unknown. However, for the case of 

a slender jet with surface tension effects neglected, Tuck (1976) and Geer 

(1977a,b) derived equations to describe the first approximation to the cross- 

sectional shape and velocities of the jet. We shall show how this can be done 

with the effects of surface tension included. The problem of determining the 

shape is thus reduced to solving a nonlinear two-dimensional problem in the 

cross-sectional plane of the jet. Both Tuck and Geer gave an exact solution 

to this problem with surface tension effects neglected, namely, a jet with an 

elliptical cross-sectional shape. (See also Green (1977).) To date no other 

exact solutions have been found. 

The purpose of this work is to present the results of solving numerically 

the associated nonlinear free boundary-value problem for jets issuing from 

orifices of several different shapes with surface tension effects included. 

The problem is formulated in section 2 and then transformed into a form more 

suitable for numerical integration. In section 3 ,  a numerical method, which 
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w e  have used t o  i n t e g r a t e  the problem ou t l ined  i n  s e c t i o n  2, is b r i e f l y  

descr ibed.  This method i s  an ex tens ion  of a method we have descr ibed  

elsewhere (Strikwerda 6 Geer (1981)) and i t  may be use fu l  i n  so lv ing  o the r  

nonl inear  f r e e  boundary-value problems. 

I n  s e c t i o n  4 ,  we present  t he  r e s u l t s  of our c a l c u l a t i o n s  using two 

d i f f e r e n t  va lues  of t he  Weber number f o r  the  flow f o r  each of t h r e e  d i f f e r e n t  

o r i f i c e  shapes.  These shapes include an e l l i p se ,  a square,  and an e q u i l a t e r a l  

t r i a n g l e .  We d i scuss  these  r e s u l t s  i n  s e c t i o n  5 ,  with s p e c i a l  emphasis on t h e  

e f f e c t s  of sur face  tens ion  on the c ross -sec t ion  shape and waves on the  su r face  

of t he  j e t .  

2. Formulation of t he  Problem 

L e t  the  v e l o c i t y  p o t e n t i a l  of t he  j e t  be denoted by Q = Q(r,e ,z ;E)  and 

l e t  the  shape of t he  f r e e  su r face  of t he  je t  be descr ibed by r = Y ( e , z ; E )  

( see  F igure  1 ) .  Here r , 8 ,  and z form t h e  usua l  (non-dimensional) 

c y l i n d r i c a l  coord ina te  system, with the  p o s i t i v e  z-axis po in t ing  v e r t i c a l l y  

downward i n  the  d i r e c t i o n  of g rav i ty .  The parameter E, t he  s lenderness  r a t i o  

of t he  j e t ,  is  the  r a t i o  of a t y p i c a l  r ad ius  of the  je t  t o  a t y p i c a l  l e n g t h  

along the  je t  and is  def ined p r e c i s e l y  by Geer (1977a). The boundary 

condi t ions  a t  the  f r e e  su r face  are the  kinematic  condi t ion  of no flow through 

t h e  su r face  and the  jump i n  pressure  due t o  su r face  tension.  For small va lues  

of E ,  we can show, using the  ideas  of Geer (1977a), t h a t  Q and are given 

bY 

Q = 2 3 (1+z)3/2 + E2+(r ,e ,z )  + o ( ~ ~ )  , (2.1) 
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where + and S satisfy the conditions 

with 

and 

(%)2 + s -2 (x) a+ 2 + 2(1 + 

holding on r = S ( 8 , z ) .  Equation 

0 0 

(2.3) follows from Laplace's equation for 

the potential, while equations (2.4) and (2.5) result from the substitution of 

the perturbation expansions (2.1) and (2.2) in the boundary conditions. In 

acceleration due to gravity, b2 is  the cross-sectional area of the jet at 

z=O, p is the mass density of the fluid, y is the surface tension 

coefficient, and U is the velocity of the jet at z=0. The Weber number for 

the jet is E'4W. (See the appendix for a derivation of equation (2.5) and a 

discussion of the Weber number for this flow.) Thus, we see that + must 

satisfy the two-dimensional Poisson equation (2.3) in the cross-section of the 

jet, while equation (2.4) esentially prescribes the normal derivative of + 
at the boundary of the cross-section. Equation (2.5) is the additional 

condition which is needed t o  determine the free surface. 

To find + and S, we transform the problem ( 2 . 3 )  - (2.5) into a form 

that is somewhat easier to deal with numerically. We first note that we can 

easily find a particular solution t o  (2.3) and consequently we write 4) in 

the form 
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where JI satisfies the homogeneous version of equation (2 .3) ,  i.e., Laplace's 

equation. Both 6 and S are presumed known at z=O. We then introduce a 

new independent radial variable p,  related to r by 

Thus, r is stretched in a non-uniform manner, but the unknown boundary 

r = S ( 8 , z )  is mapped onto the known boundary p = 1. We also define the new 

dependent variable R ( 8 , z )  by 

In terms of the independent variables p ,  8, and 2, and the dependent 

variables q(p ,B ,z )  and R ( 8 , z ) ,  equations (2.4) and (2.5) can be written as 

2 a$  2 a q 2  a g 2  3 R 4R - = ( 1 + B  )(x) - (x) - 
a Z  ( 1+z)2 

(2 .10)  

i a s - i i a ~  where = - - - - - - 
a8 a e  These equations holds for P = 1, 0 < 8 < 2n,  and 

z > 0. The differential equation (2 .3)  then becomes 

(2 .11)  
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A s  a consequence of equations (2.3) - (2.4), we find the integrability 

condition 

J2'R( 8,z)dB = constant , 
0 

(2.12) 

which expresses the constant mass flux in the jet. 

Thus, we seek solutions to equations (2.9) - (2.11) for J, and R in the 

region 0 < p 4 1, z > 0. Once J, and R have been found, 41 and S can 

be recovered using (2.6) and (2.8). 

3 .  Method of Solution 

In this section we will briefly describe the method we have devised to 

solve the problem formulated in section 2. This method is an extension of the 

method we have used to solve the problem when surface tension effects are 

neglected, which we have discussed in detail elsewhere (see Strikwerda & Geer 

(1980)). 

In order to obtain a numerical approximation to the solution of our 

problem formulated in this manner, we use a finite difference scheme defined 

on the grid points as follows: 

Bi = (i-l)Ae i=l,***,N , 
p = 1 - (j-1)Ap j=l,***,M , 
z = nAz n=0,1,2,3, * e * ,  

j 

n 

(3.1) 

where A8 = 21r/(N-l), Ap = l/(M-11, and Az is chosen to satisfy appropriate 

stability and accuracy criteria. Note that 

and pM = 0. 

= 0, 8, = 2r, z = 0, p1 = 1 0 
We then use the MacCormack scheme (MacCormack (1969)) with a 
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special time-splitting to solve equations (2.9) - (2.10). In particular, if 

we define the vector by w = (R,$IT, then equations (2.9) - (2.10) 

can be written as 

+ + 
w(e,z) 

+ a; aR a2R + aw 
- =  aZ F(z,w, - ae 3, ap + 6(z,R, , ?) , (3.2) 

+ 
where F contains all the terms from the right-hand sides of (2.9) and 

(2.10), except those from (2.10) which are multiplied by 

contains the terms from (2.10) multiplied by Using the usual forward 

and backward difference operators, D+ D-, respectively, and the centered 

second difference operator, D2, the forward-backward MacCormack scheme is 

given by the following formulas: 

W'l, and 6 
W'l. 

and 

(predictor): 
k .  

(corrector): 

In order to maintain symmetry, the forward-backward MacCormack scheme is 

alternated with the backward-forward scheme, which uses backward differences 

in the predictor step and forward differences in the corrector step. Also, it 
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was found that the conservation law (2.12) was satisfied more closely when the 

quantity B in equations (2.9) and (2.10) was approximated as 

and this form was used 

The expression DR 

denote the difference 

the quantity 6. The 

in all the calculations given here. 
+ 

used in ( 3 . 3 )  and ( 3 . 4 )  in the G operator is used to 

approximation to aR/ae which appears in G only in 

approximation for B is given by 

-+ 

The term Dp$ 

8 = Bi and z = zn. It is computed by first solving for an approximation to 

the solution J, of (2.111, with J,: specified on the boundary. The 

approximation is given by equations ( 3 . 6 )  - ( 3 . 7 )  of Geer & Strikwerda (1980), 

in ( 3 . 3 )  and ( 3 . 4 )  is an approximation to - on p = 1 at aP 

which are solved by successive over-relaxation. The term Dp$ is then 

approximated by a second-order one-sided approximation to - given by 

equation ( 3 . 8 )  of Geer & Strikwerda (1980). 
a P  

Equations ( 3 . 1 )  - ( 3 . 5 )  and equations ( 3 . 6 )  - ( 3 . 8 )  of Geer & Strikwerda 

(1980) describe our numerical scheme to solve the problem of section 2. The 

scheme can be shown to be second-order accurate in both 8 and z ,  (see 

Strikwerda & Geer (1980)). 
+ 

The splitting of the right-hand sides of (2.9) and (2.10) into the F and 

E operators and the method used in ( 3 . 3 )  and ( 3 . 4 )  allows the use of much 

larger values of Az in the calculations. Note that the second operation in 

each step determines the boundary values of the potential using the most 



8 

r ecen t  values  of R. Thus, it is similar t o  an i m p l i c i t  method, but i s ,  i n  

f a c t ,  e x p l i c i t .  In  the  c a l c u l a t i o n s  using the  above s p l i t t i n g ,  t he  choice of 

Az was l imi t ed  only by the  accuracy required t o  reso lve  the  o s c i l l a t i o n s  of 

the  jet. Without t h i s  s p l i t i n g ,  the  choice of Az was l imi t ed  by a s t a b i l i t y  

condi t ion ,  which w a s  much more severe than the  accuracy l i m i t a t i o n  using t h e  

s p l i t t i n g .  

4 .  Examples 

Severa l  examples of t h i n  streams f a l l i n g  v e r t i c a l l y  through an o r i f i c e  of 

a s p e c i f i e d  shape were ca l cu la t ed  us ing  the  scheme ou t l ined  i n  the  previous 

section. For each example the initial conditions were J, E 0 and R ( e , z ) ,  

i.e., S ( e , z ) ,  s p e c i f i e d  a t  z = 0. Note t h a t  the  cond i t ion  6 = 0 a t  z = 0 

corresponds t o  a je t  t h a t  i s  emanating with a c ross -sec t iona l  v e l o c i t y  p r o f i l e  

determined by the  p o t e n t i a l  - is; ( I + z ) - ~ ' ~  r2. Thus, i n  the  no ta t ion  of 

w a s  s e c t i o n  3,  we set 

s p e c i f i e d  by one of t he  fol lowing ( see  Figures  2-4): 

1 

0 0 0 
= 0 and Ri = R ( e i )  a t  z = 0, where Ro(e) 

'i,j 

0 1  2 2 1 .  an e l l i p s e ,  R = ( . 2 5  cos 8 + s i n  e), where t h e  semi-axes of t h e  

e l l i p s e  are 2 and 1; 

2 2 .  an e q u i l a t e r a l  t r i a n g l e ,  R min sec (8-2rR/3) where the  l eng th  
= R=0,1,2 

of the  s i d e  of the  t r i a n g l e  is 6 ; 
0 1  2 2 3 .  a square,  R = - min (sec  6,csc e), where the  length  of t he  s i d e  of 2 

the  square i s  2 .  

For each example, t he  o r i g i n  was loca ted  a t  t he  c e n t e r  of mass of the  

shape, as requi red  i n  the  d e r i v a t i o n  of t he  bas i c  equat ions ( 2 . 3 )  - ( 2 . 5 )  (see 

Geer (1977a)).  Each example w a s  run f o r  two values  of W ,  namely 1 and 0.5. 

Figures  2-4 show cross-sec t ions  of the  je t  a t  s eve ra l  va lues  of z between 0 
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and 2. For comparison, these figures may be compared with the corresponding 

figures when surface tension effects are neglected, i.e., when W is 

infinite, in Geer & Strikwerda (1980) .  

Each of our examples was integrated much further in the z-direction than 

indicated in Figures 2-4. In each case, the cross-sectional shapes exhibited 

a periodic behavior in z, except for the gradual decrease in area due to 

gravitational acceleration. To exhibit this behavior, we have plotted in 

Figures 5 and 6 the values of S ( e , z ) ,  for two fixed values of 8, as a 

function of Z .  In these figures, the definite wave structure of the jet can 

be seen. Representative cross-sectional shapes for each of our examples for 

larger values of z are shown in Figures 7 and 8. 

5. Analysis of the Waves 

We now consider in more detail the wave behavior of the slender jets we 

have calculated. Rayleigh (1879)  has discussed waves on slender jets with 

surface tension (and gravity neglected) and has argued that the temporal 

frequency of the waves should be proportional to the inverse square root of 

the Weber number W. He has also argued that if the dominant term in the 

Fourier expansion of the cross-sectional shape is 

s - so + S1 COS n(0 - eo), 

then the temporal frequency must be proportional to 

(5.1) 
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A similar argument shows that the spatial wavelength X of the waves will be 

inversely proportional to the quantity in (5.1). 

In order to investigate this relationship for the jet shapes computed 

here, we fit the curves of Figures 5 and 6 to curves of the form 

where each aj is a constant. The fitting was done by the least squares 

method, using the routine NL2SOL written by Gay and described by Dennis, Gay, 

and Welsch (1981). The approximate wavelength of the waves in Figures 5 and 6 

is then given by 

2 -  X = 2a/a 

The least squares fit was done using all of the data displayed in Figures 

5 and 6, and also with only the data between z = 10 and z = 20. The use of 

only the second half of the data was done to help eliminate the affects of any 

initial (spatial) transient disturbances, as well as to help determine whether 

or not the wavelength increased or decreased as a function of Z .  The results 

of the least squares fit are displayed in Table I. 

Two conclusions can be drawn from Table I. First, for each shape, the 

wavelength is essentially the same for each of the two curves (corresponding 

to different values of e)  shown in Figures 5 and 6. Secondly the wavelength 

is apparently increasing with z .  This second conclusion is based upon the 

observation that the values obtained from using the latter half of the data 

are consistently larger than the values obtained by using all the data. (This 

also follows from an inspection of the curves of Figures 5 and 6 when 

superimposed on the results of the least squares fit, as in Figure 9, which 

will be discussed below.) 
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To further investigate Rayleigh’s conclusions, we also computed the 

quantity 

for each of the shapes we considered, with n equal to 2, 3, or 4 for the 

ellipse, triangle, and square, respectively. The values of Xo are displayed 

in Table 11, both for the fit using all of the data and also for the fit using 

only half of the data. (Since the two values of A ,  corresponding to the 

different values of 8, are quite close for each of the shapes, the average 

was used to compute A. in Table 11.) 

The results given in Table I1 are certainly consistent with the idea that 

the wavelength is proportional to r1/2. In addition, the dependence of the 

wavelength on n is in quite good agreement with Rayleigh’s analysis, 

considering the crudeness of our assignment of n as 3 for the triangle and 4 

for the square. 

Using the results above as a guide, we now show that the shape of the 

curves in Figures 5 and 6 can be better approximated by curves of the form 

( l + ~ ) - l ’ ~  {bo + blsin(b2W-1’z ( l + ~ ) ~ / ~  + b3)} , ( 5 . 4 )  

than by curves of the form (5.2). We note that the form (5.4) corresponds to 

a shape with a slowly increasing wavelength proportional to (l+~)l/~. 

A plausibility argument for the form (5.4) is as follows. If we replace 

S(8,z) in (2.4) and (2.5) by (l+~)-”~5(8,z), these equations become 

and 
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- 
I f  we now assume t h a t ,  f o r  l a r g e  z ,  S behaves l i k e  f l ( p ( l + z ) '  + S ( e ) , e ) ,  

where B > 0, then from (5.5) we see t h a t  a t  least  one of the  terms 

( l + z ) -  "4% o r  - " must behave l i k e  D(l+z)B-1f2(u(l+z)B + 6(e),e),  as z ar ae  
becomes l a rge .  Using t h i s  r e s u l t  i n  (5.6), we f ind  t h a t  p 2 ( l+z)  Z(8-1 )  must 

be propor t iona l  t o  W - ' ( l + ~ ) - ~ / 4  Thus, 1.1 i s  propor t iona l  t o  W '/2 and 

2(8-1)  = - 1/4,  or B = 7/8. 

Table I11 d i sp lays  the  values  of b2 obtained f o r  each of our je ts  us ing  

a l l  o r  half  of the  da ta .  The b e t t e r  agreement among the  values  of b2 i n  

each row than among the  values  of X i n  Table I supports  the  conjec ture  t h a t  

t he  form ( 5 . 4 )  is more a p p r o p r i a t e  than the form (5.2) and hence t h a t  t he  

wavelength is propor t iona l  t o  W (1+~)'/~. Also, the  least  squares  f i t s  

us ing  (5 .4 )  were not iceably  b e t t e r  than those using (5.2) when superimposed on 

the o r i g i n a l  curves (see Figure 9 ) .  

I n  add i t ion  t o  the  a f f e c t s  we have discussed here ,  t h e r e  was a l s o  a small 

decrease i n  the  amplitudes of the  curves beyond the  f a c t o r  of ( l + z ) -  '14 . 
This  decrease was smallest f o r  the  e l l i p se  and g r e a t e s t  f o r  t he  square.  It is  

d i f f i c u l t  t o  determine whether t h i s  decrease i n  amplitude is due t o  numerical  

d i s s i p a t i o n  or  i s  a c t u a l l y  p a r t  of the  exact so lu t ion .  
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APPEND I X 

In this appendix we show briefly how equation (2.5) is derived. At a free 

due to surface tension is given by surface, the jump in pressure AP = P - Pa 

I L 

where (RY1 + Ril) is twice the mean curvature 

(A.1) 

of the surface, P is the 

pressure within the jet, and Pa is the (constant) pressure of the 

surrounding atmosphere. In particular, if the equation of our surface is of 

the form r = h(8,7), where r,e, and z form the usual cylindrical 

coordinate system, then we find 

- - - 

- + - =  1 
R1 R2 z e z z  e 

-[h2(l+h2) + h 2 ] -312 {hh- - (h 2 2  +h ) - 2(hh - h h )h h 
eF z e  ;e 

+ (l+h2)(hh - 2h 2 - h2)}. - 
z 08 e 

Using the notation of Geer (1977a) and introducing non-dimensional variables 

r = r/b and z = z/L,  where L = U /2g, and letting h = bS(B,z), we find 

that equation (A.2) can be written as 

2 - - 

2 -1 
O ( E  b ) , 

s2 + 2s; - - + - = -  1 1 1 
R1 R2 (S2 + S e )  2 312 (A.3) 

where E = b/L. Also, if 4 = ULQ is the velocity potential for the flow 

within the jet, we can use Bernoulli's theorem and (A.3) to write (A.l) as 

-l ssee - S L  - 
(s2 + S e )  

L 

2se} + O ( E  2-1 W ), (A.4) 
2 312 = E2(1+Z) + w { 
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where E is the Weber number for our flow, defined by 

- pU2b pU6 w=-=- (A.5) 
2ye2 8ybg2 

(Equation (A.4) is a generalization of equation (11) in Geer (1977a) which 

includes surface tension effects for a slender vertical jet.) 

Now, following the same procedure as Geer (1977a), we let 

0 Q = Q + EO1 + E2Q2 + * * *  and see from his equation (7) and (9) that Qo and 

Q1 are functions of z alone and, in particular, do not depend upon r or 

8. Thus, the lowest order terms on the left side of (A.4) which can vary 

with 8 are O ( E  ). Hence, a meaningful condition on S can be obtained 
4 from equation ( A . 4 )  only if 

4 

G-' = O(E: ), i.e., 

w-1 = O ( 1 )  , 4 -1 ii-l = E w , 

4- 2 3  2 
I where W = E W = 2g b p/yU . Using equation (A.6) and the expansions (2.1) 

4 and (2.2), the terms which are O(E ) in equation (A.4) yield equation (2.5). 
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Table I 

Estimates of the wavelengths for the curves in Figures 5 and 6.  The 
estimates are based on a least squares fit using all of the data for 
0 < z < 20 and also using only the data for 10 < z < 20. For each 

shape, the wavelengths were computed for each of the two curves 

corresponding to the two values of 0 considered. 

E Shape 

Ellipse 0' 

90° 

60° 

Square O0 
45O 

w = 1.0 W = 0.5 1 
(all data) (half data) 

6.48 6.90 

6.48 6.91 

(all data) (half data) 

4.55 4.84 

4.55 4.86 

3.40 3.54 

3.39 3.54 

2.34 2.43 

2.34 2.43 

1.89 1.99 

1.89 1.99 

1.33 1.41 

1.32 1.41 



Table I1 

Values of ho c a l c u l a t e d  from formula (5.3) f o r  

t h e  curves of F igures  5 and 6. 

x Shape 

E l l i p s e  

Tr i ang le  

Square 

w = 1.0 

( a l l  d a t a )  (ha l f  da ta  ) 

2.53 2.70 

2.65 2.76 

2.33 2.45 

W = 0.5 

( a l l  d a t a )  (ha l f  da t a  ) 

2.51 

2.58 

2.31 

2.67 

2.68 

2.46 
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w = 1.0 

( a l l  d a t a )  (ha l f  d a t a )  

E l l i p s e  0' 1.465 1.464 

goo 1.469 1.462 

Triangle  0' 2.804 2.862 

60' 2.801 2.860 

Square O0 4.977 5.081 

45O 4.975 5.079 

Table 111 

Values of t he  parameter b2 i n  formula (5 .4 )  f o r  d i f f e r e n t  je ts .  

W = 0.5 

( a l l  d a t a )  (ha1 f da ta  ) 

1.478 1.483 

1.478 1.478 

2.863 2.948 

2.862 2.949 

4.989 5.065 

4.988 5.066 
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F igure  Captions 

F igu re  1: 

F igu re  2: 

u r e  3 

Figure  4: 

F igu re  5 :  

Sketch of a v e r t i c a l  s l e n d e r  je t ,  with an  i n d i c a t i o n  of t h e  

coord ina te  system. The locus of c e n t r o i d s  of t h e  cross-sect ions 

of t h e  j e t  form a s t r a i g h t  l i n e  ( i n  t h e  d i r e c t i o n  of g r a v i t y ) ,  

which we choose t o  be t h e  z-axis.  Then r, 8 ,  and z form t h e  

usua l  c y l i n d r i c a l  coord ina te  system, where 0 is measured from 

any convenient plane through t h e  z-axis. The f r e e  s u r f a c e  of t h e  

j e t  i s  denoted by r =Y(~,z;E). 

Cross-sect ional  shapes a t  s e v e r a l  va lues  of z of a j e t  with an 

i n i t i a l  shape i n  the  form of an e l l i p s e ,  a t r i a n g l e ,  o r  a square. 

The shapes are shown a t  z = 0,(0.5),2 wi th  W = 1.0. 

Cross-sect ional  shapes a t  s e v e r a l  va lues  of z of a jet with an 

i n i t i a l  shape i n  the  form of an e l l i p s e ,  a t r i a n g l e ,  o r  a square.  

The shapes are shown a t  z = 0,(0.25),1 and with W = 0.5, which 

corresponds t o  a l a r g e r  s u r f a c e  t ens ion  c o e f f i c i e n t .  

Cont inuat ion of Figure 3 f o r  z = 1.25,(0.25),2.0. 

P l o t s  of t h e  va lues  of S ( 8 , z )  f o r  0 < z < 20 €or  each of t h e  

t h r e e  j e t  shapes and f o r  two s p e c i f i c  va lues  of 8. For t h e  

e l l i p s e ,  S was p l o t t e d  f o r  0 = 0 and 7112; €or t he  t r i a n g l e ,  

8 = 0 and 4 3 ;  and €or t h e  square,  8 = 0 and 7114. The v a l u e  

of W is 1.0. The lower p a i r  of curves are €or  t h e  e l l i p s e ,  t h e  

middle p a i r  are f o r  t he  t r i a n g l e ,  and t h e  upper p a i r  are f o r  t h e  
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square.  For d i sp l ay  purposes, t h e  middle curves have been o f f s e t  

by 1.0 and t h e  upper curves by 2 . 0 .  

Figure  6: Same type of p l o t  as i n  Figure 5 ,  except t h a t  W is now 0 . 5 ,  

corresponding t o  an increased s u r f a c e  t ens ion  c o e f f i c i e n t .  

F igu re  7: Cross-sect ional  shapes of t he  t h r e e  jets a t  l a r g e r  values  of Z .  

The shapes are shown f o r  z = 10,(1) ,14 and with W = 1.0. 

F i m r e  8: Same type of c ros s - sec t iona l  shapes as i n  Figure 7, bu t  with 

W = 0 . 5 ,  r ep resen t ing  an i n c r e a s e  i n  t h e  s u r f a c e  t e n s i o n  

c o e f f i c i e n t .  

F igu re  9: Comparison of t he  curve i n  Figure 6 (mul t ip l i ed  by (l+z) ) 

corresponding t o  t h e  i n i t i a l l y  e l l i p t i c a l  shape f o r  8 = 0 and 

W = 0 .5  with t h e  f i t t e d  curves:  (a )  form ( 5 . 2 ) ;  and (b) form 

( 5 . 4 ) .  The upper p a i r  i s  t h e  d a t a  compared with t h e  form ( 5 . 2 ) ,  

and t h e  lower p a i r  is t h e  d a t a  compared with t h e  form (5.4). 



r = S ( e ,  Z ;  E) 

F i g u r e  1. 
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Figure  9. 
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